
Wrestling a Giant C++
desktop app into your
browser
and making LibreOffice sing
Michael Meeks
CEO
michael.meeks@collabora.com

“Stand at the crossroads and look; ask for the ancient paths, ask where the good
way is, and walk in it, and you will find rest for your souls...” - Jeremiah 6:16

FLOSS is uniquely fascinating !
You can see everything …

● The mass of code underneath is quite amazing

● You can read & understand & become an expert easily.

Wrestling this code-base & platform for 25+ years

● Stories – up & down the stack.

OpenOffice.org → LibreOffice & then Collabora Online (COOL)

● A browser-based tool …

Gritty technical detail...

3

Why is OO.o slow to start ? #1

the easy to measure bit: CPU

Valgrind ! ...

5/76

ELF run-time linking: ld-linux.so.2

soffice.bin libc ld-linux sal...omit 150 ... svx sw

For every dynamic symbol we lookup:

Symbol hash

• fprintf
• write
• stderr

1.2 compares avg. per library

● dynstr + .dynsym
+ .rel* + .plt
+ .hash = 22MB
(OO.o 1.1)

●

A cache hammering
experience.
Unhelpfully spread out: on-

demand linking ...

6/76

Towards a fix:
Prototyped several fixes:

● -Bdirect → at compile-time remember the library to look up symbols in
● Except for ‘Vague’ symbols etc. etc. remove a 100x factor.

● Various improved symbol hash storage schemes
● Avoiding lots of named-relocations … → not finalized.

Large apps:
● Default is not to have the symbol – so optimize for that.
● Much sparser & smaller ‘bloom filter’ in front of symbol lookup

● A big bit-field mask – for “do we have an entry”
● Only if so – go on to touch the symbol.

.gnu.hash
● New linking standard

7

Why is OO.o slow to start ? #2

oh dear, no good tools exist: I/O

8/76

I/O → cold vs. warm start:

Thinkpad 08

Thinkpad 06

Optiplex 05

Inspiron 02

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

83%

80%

78%

44%

Warm start as % of cold start time

eg. OpenOffice.org startup really sucks: Amdahl asks Why ?

9/76

Happy page-cache users chip-in:
Google: "openoffice startup graphics cache"

~about 1,830,000 hits ...

Tom Adelstein – “Linux Journal” (or earlier?)

re-printed in Linux Format, the Inquirerer.net, PC Pro forums...

 “Under Ubuntu, I found that OO Writer opened in three seconds, and in
Fedora it opened in less than six seconds. Previously, it took 30 and 26
seconds”

How is it achieved ?!

Increase the graphics cache ram, I upped mine to 64 for "Use for OO.org" and 5 for
"memory per object"

Loading times will increase[sic.] dramatically. (20 seconds to 7 seconds on one computer
I've used)"

10/76

More satisfied page-cache users ...
Is it just Gentoo syndrome run wild ? ...

“very effective change. Having run knoppix from the cd drive for over a
year on a few computers, this increase in memory setting cuts anywhere
from 30 seconds to more than several minutes”

“Ubuntu Forums HOWTO: Speed up OO.o start up”

 Not bad My speed about doubled, and I've only got 128 MB of RAM.
- Hikaru79

I did see a speed up of about 50%, or 3 seconds to startup on my PC. -
wallijonn

 ... this has sped up OOo loading tremendously ... it now loads up in 4
seconds instead of the old 8 seconds. ... [this should be] "Howto of
the Year". - thepoch

11

Never profile without measuring:
so write a (~throw-away)

measuring tool:

12/76

Iogrind – a valgrind tool + GUI
Now Obsolete / Under-used but fun:

● Traced system-call I/O
● Traced memory-map first-page touching
● Generated a trace.

Disk-simulator / re-run-trace …
● Aggregate stack traces, and visualize result:
● Split the trace from the file-system layout:

● Different layouts → better or worse etc.

13/76

What can we see: stack mode

14/76

What can we see: address view

15/76

What can we see: disk view

16/76

Towards a fix:
Pre-loading sorted by inode …

libmerged → major component re-work ...

Linux Hackers

● Plumbers talk → pointed at their file-system problems …

● Ultimately: SSDs …

● Empty writer: today: 2.37s cold, 2.17sec warm

● 80% I/O to 8% I/O ...
● psychologically referent: web-pages

17

Perceived slowness to start ? #3

Where is the splash-screen ?

18/76

splashx.c …
Split out the ‘draw a splash’

● Draws splash

● Renders progress-bar

● No bevel, no AA text, no CSS animated progress, no theming ...
● data from a pipe to the main app

● $ ldd oosplash | wc -l
11 (shared libraries)

19

LibreOffice happened: freeing
developers to re-factor &

improve aggressively

shortly afterwards TDF setup

20

Code re-structuring ...

21/76

Why re-structure at all ?
A ~40 year old code-base

● Object Orientation mania
● The silver-bullet

● OO toolkit – less interesting
● Demo / Office apps → very interesting.

What languages should we use ?

What platforms should we target ?

“Technology – the only industry that is more
 fashion driven than women’s fashion” – Larry Ellison

22

Lets re-write all 8 million lines in
<insert-language>:

Java, Javascript, Rust,
Haskell … !!!

#1 indicator of engineering
immaturity

23

Tip#1 - don’t buy a silver bullet:

"there is no single development, in either
technology or management technique,
which by itself promises even one order

of magnitude improvement within a
decade in productivity, in reliability, in
simplicity." Fred Brooks – The Mythical

Man Month

24/76

Sample 10x productivity wins
Object Oriented programming !

Java → develop 10x faster
● Garbage collection ! It rocks.

C# → develop 10x faster
● Syntactic sugar! It rocks.

"As such, whilst Vala is a modern language with all of the features
 you would expect, it gains its power from …"

● Language augmenting pre-processors are great

And on … and on.

https://wiki.gnome.org/Projects/Vala/Tutorial

25/76

A personal favourite

June 2009

Slope of suffering

Peak of
Inflated
Expectations

Plateau of questing for
newer peaks ...

“We encourage the OpenOffice group to quickly build their
version of a spread sheet or a word app using JavaFX,"

- Larry Ellison (according to theregister) - June 2009

● Fatal mistake: using a unique name
● Hot Tip – your vanity language / platform project should have a

non-google-trend-able name eg. ‘ruby’, ‘rust’, ‘go’ - not eg. ‘zsquat’

● JavaFX’s Classic Hype-Cycle trajectory / google trend

26/76

Lucking out on language ?
"The point I'm trying to make is that the only reason why all of this was
possible, where we build ... [Microsoft Office] ... for 30 years, not only
ship those applications but evolve them - picked C/C++ - tremendously
lucked out. All the other languages - two categories:

1. language would have been re-invented 3 times and had to re-write
the thing 3 times.

2. authors of language & industry lost interest and it would have
stagnated"

– Igor Zaika (Microsoft, Distinguished Eng.) CppCon 2014

https://youtu.be/3HROqnw-nf4?t=14m58s

27/76

Language bits.
Language bigotry:

● Almost totally pointless

● The leading driver of pointless duplication

● Wins over even license choice … ?
● Lots of it out there.

We’re still slowly writing out Java

● can’t guarantee it is on the platform
in the same way that binaries are.

● The embedded Rhino JS-in-Java impl ? …

● Default HSQLDB format → in databases ...

28/76

Cross Platform-ness: Churn
Windows rendering APIs:

● GDI: basic version with windows 1.0~1985
● Made the 16bit → 64bit transition well.

GDI+ in XP - 2001

DirectWrite Win7/2007
● finally a physical font API.

Direct2D: 2012

Easy to churn faster than big apps can handle

Linux toolkits
● gtk+1, Qt2 – 1999
● gtk+2, Qt3 – 2000
● Qt4 - 2005
● Gtk+3 - 2011
● Qt5 - 2012
● Gtk+4 – 2021
● Qt6 - 2023

Apple: churn to match

Bold: in-use ...

https://msdn.microsoft.com/en-us/library/windows/desktop/ff684176(v=vs.85).aspx

29

Object Orientation !

30/76

Historic Object Orientation mania ...

“...let's take the desktop computer
revolution to the next stage. What we
need are true object-oriented
environments.”

Philippe Kahn, Borland founder & CEO, 1991 ..

The New York Times, August 18, 1991, Section 3, Page 9.

31/76

Object Oriented programming
#2 +1 year
Borland’s - Philippe Kahn:

 "Creating the initial "objects" is difficult, especially for programmers
 who are used to designing the old-fashioned way."

 "But ultimately the payoff will be faster, less costly development
 of new programs and upgrades."

The New York Times (July 26, 1992, Section 3, Page 1)

 "If the objects approach is so great, Mr. Gates has said,
 why are Borland's Windows products so late?”

32/76

How (not) to Design:
Look at the screen: what you see is objects !

● Epic Object Oriented blunders:

● I see a spreadsheet cell ! → object

● I see a paragraph ! → object

● I see a table ! → object

● Power ideas:

● Our file format can just be a recursive
serialization of all our objects !!!!

● Change-tracking makes this too complex:
so tack it on the side & mutate the model.

● Oh dear ! Oh dear ...

33/76

Fixed many of these things in
recentish time.

● Binfilter → changing object graph ...

● hideous hack … removed in LibreOffice 4.0

● Spreadsheets

● Massive re-factoring for AMD of the Calc core.
● Sensible, contiguous type span data structures (MDDS)
● Huge memory reductions, significant performance improvements

● Thanks to Kohei Yoshida (Collabora)

● Writer

● Red-lining turned into a view state – not model fiddling festival
● Thanks to Michael Stahl (CIB) for Munich City.

Top Tip:
try to spot the
panaceas of
today and
critically examine
their claims. Hold
onto the good.

34

Threading

35/76

2017 Crash reporting trend
Frustratingly ‘cores’ not threads.

20
17

-01
-01

20
17

-02
-01

20
17

-03
-01

20
17

-04
-01

20
17

-05
-01

20
17

-06
-01

20
17

-07
-01

20
17

-08
-01

20
17

-09
-01

20
17

-10
-01

20
17

-11
-01

20
17

-12
-01

20
18

-01
-01

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Crash report % by CPU core count over time.

48
36
32
24
16
12
10
8
6
4
2
1

20
17

-01
-01

20
17

-02
-01

20
17

-03
-01

20
17

-04
-01

20
17

-05
-01

20
17

-06
-01

20
17

-07
-01

20
17

-08
-01

20
17

-09
-01

20
17

-10
-01

20
17

-11
-01

20
17

-12
-01

20
18

-01
-01

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Reports from large core count machines.

48
40
36
32
24
16
12
10

Thanks to Markus Mohrhard

36/76

Threading fun:
Config Management

● Hideous example of 2nd system problem
● A path/key – value store

● Plus some smarts.
● 55 mutexes taken & released on each key fetch.

● And not thread-safe.

Replaced with a single big code-lock

● Beware of granular locking …
● Faster, smaller, simpler, reasonable code.

37/76

O(~1) XML parsing ...
Parsing XML is a significantly costly pain

● Format is needlessly complex; cf. JSON.
● Namespace handling & tokenization is a pain.
● Double checking for duplicate attributes bad too …
● SAX API really poor for CPU cache usage:

● a heavily fragmented workload.

XML
XML parser
Tokenizer

Swing

Buffers

SAX event
emission Core

38

Calc: extreme coupling & threads.

ScDocument
ScTable

ScFormulaCell block

Broadcasters

ScBroadcastAreaSlotMachine

ScColumn

DependenciesDependencies
ScInterpreter

ScTokenArray

ScFormulaCellGroup

… Tokens

… RPN

Mutates: INDEX, OFFSET etc.
Cloud

Web fn’s

Macros
Ext’ns

Mutates!

Vlookup
Cache

Number format,
Link mgmt etc.

39/76

single 1 2 4 8 16
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

re-calculating 100k formulae on 1m doubles

Meeks/Linux
Ryzen/Win10

Thread count

Se
co

nd
s t

o
ca

lc
ul

at
e

Calc parallelism results ...
Extreme care & choice of threading
granularity

● Mostly lock-less, but lots of
assertions.

● Would love more language support
to help; C++ weak here.

Some good improvements
● Plenty more to do to expand the

scope & reliability
● Embarrassing atomic operation

thrash.

40

LibreOffice Cleanups …

41/76

Tastier code – easier to chew

Seven years in – all German
comments were gone

Thanks to:

Jens Carl, Johnny_M, Michael
Stahl (RedHat), Katerina Behrens
(CIB), Thomas Beck (CIB), Lukas
Röllin, Gabor Kelemen, Stephan
Bergmann (RedHat),
dennisroczek, and many others.

3.3 3.5 4.0 4.2 4.4 5.1 5.3
0

10,000

20,000

30,000

40,000

50,000

60,000

Detected lines of German
comment

Collabora Productivity

Security: Coverity … score 0.00

Excellent static checker.

43/76

Systematic load crash testing:
100k+ files (now 350k+)

44/76

Systematic save crash testing:
100k+ files

45

Callgrind based automated
performance testing.

46/76

Code quality improvement ...
New tools find new bugs – and over time that reduces

20
11

-01

20
11

-05

20
11

-09

20
12

-01

20
12

-05

20
12

-09

20
13

-01

20
13

-05

20
13

-09

20
14

-01

20
14

-05

20
14

-09

20
15

-01

20
15

-05

20
15

-09

20
16

-01

20
16

-05

20
16

-09

20
17

-01

20
17

-05

20
17

-09

20
18

-01

20
18

-05
0

50

100

150

200

250

Commits per month easily attributable to various tools

WaE
valgrind
ubsan
ofz
forcepoint
crashtesting
cppcheck
coverity
asan
afl

Use lots of
different fuzzers

/ checkers !

Google:
OSS-Fuzz

47/76

Less eye-strain horror
Code-base pre-dates templates: C-pre-processor generics instead left & right.

enum cleanup & strings …

-case BUTTON_ABORT: aText = rtl::OUString(
- RTL_CONSTASCII_USTRINGPARAM("Abort"));
+case StandardButtonType::Abort: aText = "Abort";

Pretty iterators & auto

- for(std::unordered_map< Atom, Selection* >::iterator it =
This->m_aSelections.begin(); it != This->m_aSelections.end();
++it)
+ for (auto const& selection : This->m_aSelections)

And tons more – still ongoing ...

48/76

Clang plugins ...
Expanding C++ checking:

● unexpected bool conversion hunting
● flatten: look for large if statement at end of function
● cast cleanups / re-writing

Wider scope of understanding

● Unused-fields checking
● count all users of default params
● un-necessary-virtual detection
● Use-unique-ptr

And tons more: thanks to

● Noel Grandin (Collabora) & Stephan Bergman (RedHat)

49/76

Real Native Widgets / Layout …
Cartoon - Native Widgets ...

● Used for years on Win/Mac/Linux
● Twist widgets into rendering bits of themselves
● Missing: theming details, animations

Plus Native Menu-bar, File-selector, Tool-tips

A human can always lay-out a dialog better than auto-layout ! (or not)
● Now: finished converting all dialogs to glade / XML years back: 1200+ .ui files ...

Now starting to load native gtk+ dialogs, widgets & wrapping API – WxWidgets style
● Thanks to Caolan McNamara (RedHat)

50/76

Core Infrastructure Initiative
OSS-Fuzz

● Huge Testing infrastructure provided by Google

● Used for Chrome & many other OSS projects.
● ~1000 core cluster to hugely accelerate testing.

● Manual auditing – killed by AI ?

● Finds newly introduced problems rapidly
before they can escape (CVEs)

Coverity – still a score of ~0.00

Thanks to Caolan McNamara (was at RedHat)

51/76

Avoiding deja-vu in bug-fixing
Fix each bug just once;

Thanks to: Miklos Vajna (Collabora),
Stephan Bergmann (RedHat), Noel
Grandin (Collabora), Zdeněk Crhonek,
Caolán McNamara (RedHat), Ashod
Nakashian (Collabora), Justin Luth (SIL),
Tamás Zolnai (Collabora), Andrea
Gelmini, Jan Holesovsky (Collabora),
Markus Mohrhard, Eike Rathke
(RedHat), Mike Kaganski (Collabora),
Jens Carl, Michael Stahl (RedHat),
Szymon Kłos (Collabora), Tor Lillqvist
(Collabora), Chris Sherlock, Pranav Kant
(Collabora), Winfried Donkers, David
Tardon (RedHat)

with >20 unit test commits in
5.4/6.0 3.5 3.6 4.0 4.1 4.2 4.3 4.4 5.0 5.1 5.2 5.3 5.4 6.0

0

5,000

10,000

15,000

20,000

25,000

30,000

Growth in unit tests over time

count of various CPPUNIT macros

Asserts
Tests

52

The Web as a platform:

53/76

The web as a platform freak-show:
We know how to create languages

● To enable quality software
development.

Javascript !
● No types

● Not just un-checked & un-safe
● Consider the JIT { ‘x’: 3, ‘y’: 5 }

No class / object orientation
● No encapsulation

Different between browsers

“Built with Global Variables !”
● Monster global: the DOM

“Access it through regular expressions !”
● All the worst features of perl …

Split your JS code into modules:
● Then you can’t tell which executes in

what order
● So bundle-ify them together again

Can’t draw hair-lines in firefox:
● Canvas sizes beyond 127 x 127 can anti-

alias paths when they shouldn't

https://bugzilla.mozilla.org/show_bug.cgi?id=1867194

54

But still – ubiquity is a killer feature

Built with LibreOffice technology
Rich, interoperable, collaborative editing, everywhere

~105 million docker image downloads

56/76

What is Collabora Online?
Documents + Spreadsheets + Slides + Drawings

● Viewing and collaborative editing
● Feature rich

Interoperability with Microsoft formats
● docx, doc, rtf, xlsx, xls, pptx, ppt

Import filters and viewing for
● PDF, Visio, Publisher and many more

Powerful WYSIWYG rendering
On-premise integration
Architecture – a bet on CPU threads and network
getting cheaper over time

What is Collabora Online?

Collaborative Spreadsheets

Collaborative Drawing

Collaborative Presentations

Collabora for Android, iOS &
Chromebooks Also available

on Desktop,
Mobile &

Chrome OS

Untrusted Clients Trusted, Secure, Collabora Online Server

Sending
pixels
to screens

Firewall
VPN

Proxy

Load-balanced
Redundant
Instances

Document Security

63/76

Different optimizations
Online

● dlopens ~world (RTLD_BIND_NOW)

● Loads ~all dictionaries & hyphenation

● then forks children

● Copy-on-write-ness everywhere.
● waste memory in pre-init to save in children

● Waste CPU time on startup to save it later.

Catching bad behaviour:

● Touching / un-sharing pages:

64/76

Compare memory: loolmap
Useful tool for eg. kdeinit, webservers?

heap page: 0x011e9000 (310/967) - touched: 17 - was shared - from [heap]
...
0x0130 03 00 00 00 0a 00 00 00 4d 00 61 00 74 00 68 00 |M.a.t.h.
-par't- 1 |
0x0140 4d 00 4c 00 20 00 32 00 2e 00 30 00 00 00 65 00 | M.L. .2...0...e.
0x0150 00 00 00 00 00 00 00 00 61 00 00 00 00 00 00 00 |a.......

Ref-count in a Unicode string incremented

Also dumps all strings it can find with –strings

Totals for heap

● shared 23040 (92160kB)
unshared 982 (3928kB)
same but unshared 191 (764kB)
dirtied bytes touched 30718 per page 31.28

Drove pre-init string
staticization

65

Collabora Online
Powerful Online Collaboration

66/76

Width is proportional time

St
ac

k
of

 fu
nc

tio
n

ca
lle

rs

Long Running Demo Profiles: A Week
What does it mean?

● 17% of a week of
profiling:

● Detecting: “is it a
Hybrid PDF”?

● Unbelievably
wasteful

● Scan last 4k block
‘AdditionalStream
s’ +17%

67/76

Silliness in various places
● Now much improved

Remove: → JS client

Thread: 4+x win, AVX2
→ 4.5x win: 18x faster

Rendering Tiles 40% of Your Profile ?
Lots of unnecessary re-rendering

● Pruning the simple cases out

68/76

RGBA RGBA RGBA RGBA

RGBA

Block of next four pixels to RLE …prepend ‘last’
pixel of the
last block

RGBA RGBA RGBA RGBA

Next time’s
‘last’ pixel:

Build comparison
register:

Compare:
cmpeq_epi32 ffffffffffff ffffffffff 0000000 000000ffffffffffffffffffffffff

NB. really 8 pixels
at a time, not
four and more 0’s
and f’s needed ...Magic: floating

point sign mask:
movemask_ps

1 1 0 0 This is our RLE mask.

How many pixels to copy? popcount(RLE mask)
Which ones ? RLE Mask → LUT + AVX2 gather

permutevar8x32_epi32 … is your friend

The Magic of AVX2 – Branch Free RLE

69/76

Automatic Documents
● Create final PDFs

or

● Create prefilled
ODP/DOCX documents
to continue working on

70/76

Automatic
Documents

● With simple JSON
● Add/remove file properties
● Create ‘Custom Properties’

71

Other Recent Updates

Thanks to our Clients and Partners eg.

Over 230 partners

in over 60 countries
offering professional support

Find your partner today!Find your local partner: www.col.la/
partners

73/76

Need smart people to help us
create the future
● An Artificial Intelligence

of stunning subtlety,
of conversational
brilliance

● That can understand what you’re doing
● And can suggest cool new things to do.
● “Trained on Documents” (TM)

74

Conclusions

75/76

FLOSS is amazing
Such a lot of interesting code

● No barriers to finding & fixing the real problems

Increasingly – Open Source Rocks
● Now two platforms to wrestle

● Linux on the server
● FLOSS browsers

Real heros work on the giant & fascinating problems
● One-code-change to ~200million LibreOffice users + ~100m COOL users

Join us to help recover people’s Digital Sovereignty
● Control over and ownership of their data
● Easy hacks to get involved COOL, LibreOffice

Thank you!

@CollaboraOffice
hello@collaboraoffice.com
www.collaboraoffice.com

Oh, that my words were recorded, that they were written on a
scroll, that they were inscribed with an iron tool on lead, or

engraved in rock for ever! I know that my Redeemer lives, and
that in the end he will stand upon the earth. And though this

body has been destroyed yet in my flesh I will see God, I myself
will see him, with my own eyes - I and not another. How my

heart yearns within me. - Job 19: 23-27

mailto:hello@collaboraoffice.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Others
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

