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“Stand at the crossroads and look; ask for 
the ancient paths, ask where the good 
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rest for your souls...” - Jeremiah 6:16
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Overview:
How Collabora Online works

● Getting a feel for latency 

How we measure performance

Typical wins

● Deltas

● Tile rendering

● Memory

● Miscellaneous sillies

Usability features

● Accessibility improvements

● The latest bits for everyone.

Future work

How to get involved

Conclusions
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How Collabora Online works:
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The various pieces:
Browser: light Javascript coolwsd: connection & process 

mgmt, admin, document lifecycle

Websocket
http/https

coolforkit: LibreOfficeKit based core 
process – event processing, document 
load/save, tiled-rendering, delta 
compression etc.

Websocket 
protocol over 
local Unix socket

File storage &
authentication server

Simple 
REST 
API

Many of:

Tiles pre-loaded 
& cached for 
larger area. 
Drawn on canvas

native JS/CSS 
chrome: dialogs, 
sidebar, toolbar 
etc.
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Speeds of things:

tile render + delta good
wired keyboard good

tile render + delta bad
hard disk seek time

bluetooth keyboard good
Frankfurt – Milan

wired keyboard bad
60Hz frame time

Frankfurt – London
bluetooth keyboard bad

mash keyboard / key
Meeks typing / key
Frankfurt – US East

Screen render good
Human eye blink

Frankfurt – US West
Screen render bad

pro typist / key
Frankfurt – Hong Kong

average typist / key
"good [web] start/ren...
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Thanks to:
● RTINGS - hardware latency
● Cloudping – network latency
● Web latency
● JsFiddle – typing latency

https://www.rtings.com/keyboard/tests/latency
https://www.cloudping.co/grid
https://edgemesh.com/blog/how-to-improve-your-website-start-render-time
https://jsfiddle.net/7963hvmf/17/
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Start counting blinks when 
you see green …

Stop when you see red.
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How did you score ?
Reciprocation for beginners:

● 1 → 1000ms per blink
● 2 → 500ms per blink
● 5 → 200ms per blink
● 6 → 167ms per blink
● 7 → 143ms per blink
● 10 → 100ms per blink
● ~130 → ~7.7ms (peregrine falcon)
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Speeds of things:

tile render + delta good
wired keyboard good

tile render + delta bad
hard disk seek time

bluetooth keyboard good
Frankfurt – Milan

wired keyboard bad
60Hz frame time

Frankfurt – London
bluetooth keyboard bad

mash keyboard / key
Meeks typing / key
Frankfurt – US East

Screen render good
Human eye blink

Frankfurt – US West
Screen render bad

pro typist / key
Frankfurt – Hong Kong

average typist / key
"good [web] start/ren...
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Sample latencies - Milliseconds - log plot

Frankfurt ↔ 
London faster 
than a bad 
bluetooth 
keyboard → PC

Blink (fast) and 
you miss a 
Frankfurt ↔ 
Eastern US & 
back; trip.
Harvard says 
blink is - 100-
400ms

Your typing ?

https://jsfiddle.net/7963hvmf/17/
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Measuring Performance
Don’t optimize before profiling
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Profiling & testing 
Demo servers

● Optimizing what people do 
when they try a demo

● Sample once per second
for a week & flamegraph

Internal Collabora users

● daily real-world use

● similar slow burn profiles

Multi-user testing

● Do we see lots of flashing red 
invalidation rectangles ?

● How does it “feel” in our community 
call with ~20 people.

● Profiling interactive stress testing.

End to end tracing tooling

● Tracking & aligning times from the 
three involved processes ...
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Interactive debugging
Help → About →
 Triple click.

● Lots of useful
data

● Invalidation
areas linger as
red surrounds
after a block red
flash.

● If the screen
flashes red:

● Something is wrong Delta
s

Zero size 

updates

Status
Green: 
valid
Yellow: 
pending
Red: 
invalid

In-tile transparent graph of recent history
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Demo profiling: example flame-graph
What does it mean ?

•17%+ of a
week of
profiling:

● Detecting:
”is it Hybrid
  PDF”?

● Unbelievably 
wasteful

● Scan last 4k block
‘AdditionalStreams’
+17%

Width is proportional time

St
ac

k 
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 fu
nc

tio
n 

ca
lle

rs
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Tiles & Deltas
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Tile Deltas cache / optimization
Store previous tiles

● So we can delta them
● Previously – generated row CRC 

while copying & kept all pixels
● Now use RLE bitmask.
● Substantially compressed: 

256x256x4 → 256 kB
● RLE compressed:  < 26 Kb – 10x size 

win
● 90 tile cache (per view) vs. 24 (per 

view)
● Plus ~2Mb per view size 

saving.

RLE DeltaBitmapRow:

uint64_t  _rleMask[4];

size_t    _rleSize;

uint32_t *_rleData;

● Split mask bits from Data

● _rleMask bit-set – ‘1’

● copy previous pixel 0 default 
transparent

● No need for a hash anymore: just 
compare _rleSize & _rleMask.



15

The magic of AVX2 – branch free loop

RGBA RGBA RGBA RGBA

RGBA

Block of next four pixels to RLE …prepend ‘last’
pixel of the
last block

RGBA RGBA RGBA RGBA

Next time’s
‘last’ pixel:

Build comparison
register:

Compare:
cmpeq_epi32 ffffffffffff ffffffffff 0000000 000000ffffffffffffffffffffffff

NB. really 8 pixels 
at a time, not 
four and more 0’s 
and f’s needed ...Magic: floating

point sign mask:
movemask_ps

1 1 0 0 This is our RLE mask.

How many pixels to copy? popcount(RLE mask)
Which ones ? RLE Mask → LUT + AVX2 gather

permutevar8x32_epi32 … is your friend
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Performance win – around 2x ...
Comparing vs. best hand-optimized CPU RLE code ...
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perf: surprisingly little delta threading
Thread default 4x wide on deltas … - but all the 
work happening in the main thread

https://github.com/CollaboraOnline/online/issues/7374
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perf: surprisingly little delta threading
An ‘if (work)’ instead of ‘while (work)’ 1 line fix 4x latency redux in delta’ing.

https://github.com/CollaboraOnline/online/issues/7374
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RGBA & pre-multiplied alpha
Documents rendered to an alpha surface

● Pre-multiplied the sensible way to go so of course:

● HTML5 canvas API – not pre-multiplied
● HTML5 canvas implementation – pre-multiplied [!]

● cf. complaints about not getting back RGBA you put into it …

Change the approach and win

● COOL → un-premultiply → net → canvas API → re-pre-multiply → graphics

● COOL → net → un-premultiply → canvas API → re-pre-multiply → graphics

● Leave the web’s problems to the browser JIT.
● Also RGBA support to Cairo from libpixman, to avoid BGRA conversion.

https://dev.to/yoya/canvas-getimagedata-premultiplied-alpha-150b
https://github.com/whatwg/html/issues/5365
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Tile Rendering
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Rendering tiles 40% of your profile ?
Plausibly could be good or is it bad ?

● How does it feel ?

With lots of bogus invalidations

● you see lots of re-rendering ...
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Lets do a lot less invalidation / render
Desktop app: “Rendering is free”

● COOL: “that’s not cool!”

Avoiding pointless invalidations:

● Whole doc when user joins document

● Whole doc on switching slides

● Whole doc on enlarging call sheet

● Whole doc on click in header/footer

● Entire row when editing calc cell

Saving huge amounts of rendering …

● Really impactful on latency

● Dropping unnecessary 100ms
waits is good …

● Wasted rendering is cheap bandwidth 
wise: empty deltas ...
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Better Latency Hiding
More aggressive Javascript tile caching

● An old tile is better than nothing

● 150 - 250 tiles as canvases
(30-60Mb)

● Shepherd canvas memory better

● JS ‘GC’ is not your friend; need to 
explicitly memory manage these.

Store & manage zstd compressed tiles

● 1000 – 2000 tiles zstd compressed
● Keyframes + Deltas

More aggressive pre-fetching

● Next Previous / Next Slide in direction 
of movement – 100ms after switch

● Fetching and caching around the view 
area

● Tracking global invalidations to 
manage larger cache properly.
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LRU: std::list::size as std::distance()
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Kill paint to a giant virtual device
Older Writer rendering path:

//Refresh with virtual device
  to avoid flickering.
VclPtrInstance<VirtualDevice> 
pVout( *mpOut );
pVout->SetMapMode( mpOut-
>GetMapMode() );
Size aSize( VisArea().SSize() );
aSize.AdjustWidth(20);
aSize.AdjustHeight(20);
if( pVout->SetOutputSize( aSize ) )

Un-necessary PC ‘flicker 
reduction’ optimization

● We push tiles to JS for a 
flicker-free scroll/zoom 
anyway.

Giant / whole document area

● Plus a bit.

Back that with lots of memory 
& do lots of rendering into it



26

Memory use
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Lots of space (& time) saving:
Discovered a lurking benchmark

● Allocate 64Mb of RAM, and 
performing a CPU rendering 
benchmark before loading each 
document …

● Good to get initial dirty-page
count down to ~20Mb in one line.

Image caching
● Compressed images are small!

● Not so TIFFs → swap them.
● Cache & Images & glibc allocator

trim on idle → mobile-phone style.

Sparse documents:

● Calc – file save used to allocate all 16k 
columns – making many things 
slower.

● Calc – discourage users to leap to 
limits of document

$ make run-inproc

● Run under massif / valgrind as a
single process in the build-tree …

● Avoiding real-CPU timing jitter:

● flat profiles for no change … vital.

https://git.libreoffice.org/core/+/35275a42610e35f6a4250529ce01450c88b4583d
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Misc. sillies
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Week long demo profile: 1.4% time:
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Kernel craziness: /proc/smaps*
Need to gather PSS for each kit process

● We have 100+ memory maps

● /proc/self/smaps fd passed by UDS between 
privilege domains to supervisor process.

● Have to rewind, can’t close & re-open

/proc/smaps_rollup joy !

● Does just what we want: better!
● But: Rewind, re-read: constantly increases

memory reported …
● Dynamic check for Linus’ horror bug fix

https://github.com/torvalds/linux/commit/258f669e7e88c18edbc23fe5ce00a476b924551f
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Hunspell inner loop ...
int AffixMgr::compound_check_morph(const std::string& word …
  // add a time limit to handle possible
  // combinatorical explosion of the overlapping words
  HUNSPELL_THREAD_LOCAL clock_t timelimit;
   if (wordnum == 0) {
      // get the start time, seeing as we're reusing this set to 0
      // to flag timeout, use clock() + 1 to avoid start clock()
      // of 0 as being a timeout
      timelimit = clock() + 1;
  }
  else if (timelimit != 0 && (clock() > timelimit + TIMELIMIT)) {
      timelimit = 0;
…

Switch to shared memory CLOCK_MONOTONIC ?

auto clock_now = std::chrono::steady_clock::now();

● Thanks to Noel Grandin.
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Performance
A faster, slicker experience

● Memory trimming on idle: cleans 
caches & frees up memory

● Swap out compressed image data 
as well as uncompressed

● Faster load of large spreadsheets

● Significantly reduced re-rendering 
(even more pending)

● Continual style re-thumbnailing 
redux – caching of generated JSON

● Improved tile pre-loading (with 
more caching work queued)

● Clamp over-sizing of threads

● Accelerated transparent text 
rendering

● Avoid background whole 
document renders

● Compress RLE’d tiles on the wire
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Usability & UX
Making things easier to use ...
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Accessibility
Dark mode + view settings

● Per view settings, allows us to 
render views differently – 
including various options such as 
showing non-printing characters 
or spell checking underlines in 
different views, in addition to 
Dark Mode.
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Accessibility
Keyboard accelerators

● Expansion for languages

● Keyboard shortcuts have 
been expanded to allow all 
users to be able to use their 
own language’s keyboard 
shortcuts when editing a file 
collaboratively.

● Holding down the ‘Alt’ key 
will also highlight options for 
learnability.
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Accessibility
Page Navigation

● Navigator functionality is 
viewable in the sidebar, allowing 
you to jump to each section by 
simply clicking the headings.
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Recent Usability Polish

Amazingly users when asked care
mostly about UX efficiency
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Usability
Font previews

● You can now see a preview of 
fonts to see what they look like 
before selecting it in the drop 
down box.
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Usability
Page number insertion – familiar, 
simplified pop up

● Combining inserting the 
required headers, footers, and 
page number fields into a 
single, easy to use, familiar 
dialog for users.

● Featuring all the common 
alignment options, support for 
a variety of languages, and a 
preview.
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Usability
Change tracking in numbered lists

● When making changes within 
numbered lists, the numbering 
has now been fixed to show 
actual and original numbers 
within the document.
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Usability
AI based translations with DeepL

● Translating text with DeepL 
inside a Writer document is as 
easy as selecting it, clicking the 
“Translate” button and 
choosing the target language 
from dialog.



44

Future Performance
optimization
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Future tile wins:
Simple examples:

● Scope for improvement

● eg. ‘typing space’
● Writer: adding page – invalidate 

only the end …

● Delta & RLE only rows we know 
changed:

● Writer: don’t invalidate to the 
end of the row ...
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Other fun areas:
RGBA rendering

● Currently we render RGB

● Then re-render ‘A’

● Then merge the two, then …

● Great potential 2x win ...
● Already moved to Opacity/Alpha not 

Transparency channel

● Thanks to Noel Grandin

Performance regression testing

● Using valgrind to get flat lines ...

Pipelining loading
● Fetch cool.html …

● <async CheckFileInfo>
● <async document load>

● cool.html’s JS connects on websocket
● gets a pre-loaded document.
● <currently we start loading here>

● Halve the load time ?
● Patch in review from Ashod 

Nakashian.
● Also: to come: asynchronous 

locking ...
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With thanks to our Partners, 
Customers & Community !
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Conclusions
Try out the latest Collabora Online 23.05.8+ and/or 24.04 ...

● Already smooth, getting smoother & more beautiful.

● Architecture: a bet on CPUs and networks getting faster & cheaper 

● In race with the hardware folk to get the biggest wins.
● Modern CPUs are -amazingly- quick ...

Still lots of fun to be had: do get involved !

● Lots of easy UX wins and polish to work on: JS, CSS, C++ to taste ...

● Follow our calc & writer tracker performance bugs: a profile a week …

● Get involved in COOL and LibreOffice Technology

https://github.com/CollaboraOnline/online/issues/6893
https://github.com/CollaboraOnline/online/issues/8051
https://collaboraonline.github.io/
https://www.libreoffice.org/community/get-involved/


Thank you!

@CollaboraOffice
hello@collaboraoffice.com
www.collaboraoffice.com

Oh, that my words were recorded, that they were written on 
a scroll, that they were inscribed with an iron tool on lead, 
or engraved in rock for ever! I know that my Redeemer lives, 
and that in the end he will stand upon the earth. And 
though this body has been destroyed yet in my flesh I will 
see God, I myself will see him, with my own eyes - I and not 
another. How my heart yearns within me. - Job 19: 23-27

mailto:hello@collaboraoffice.com
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