
Smooth & beautiful,
collaborative editing for all

Collabora Online
Usability Optimization

Michael Meeks and Caolán McNamara
CEO Principle Engineer
michael.meeks@collabora.com caolan.mcnamara@collabora.com

“Stand at the crossroads and look; ask for
the ancient paths, ask where the good
way is, and walk in it, and you will find
rest for your souls...” - Jeremiah 6:16

mailto:michael.meeks@collabora.com
mailto:caolan.mcnamara@collabora.com

2

Overview:
How Collabora Online works

● Getting a feel for latency

How we measure performance

Typical wins

● Deltas

● Tile rendering

● Memory

● Miscellaneous sillies

Usability features

● Accessibility improvements

● The latest bits for everyone.

Future work

How to get involved

Conclusions

3

How Collabora Online works:

4

The various pieces:
Browser: light Javascript coolwsd: connection & process

mgmt, admin, document lifecycle

Websocket
http/https

coolforkit: LibreOfficeKit based core
process – event processing, document
load/save, tiled-rendering, delta
compression etc.

Websocket
protocol over
local Unix socket

File storage &
authentication server

Simple
REST
API

Many of:

Tiles pre-loaded
& cached for
larger area.
Drawn on canvas

native JS/CSS
chrome: dialogs,
sidebar, toolbar
etc.

5

Speeds of things:

tile render + delta good
wired keyboard good

tile render + delta bad
hard disk seek time

bluetooth keyboard good
Frankfurt – Milan

wired keyboard bad
60Hz frame time

Frankfurt – London
bluetooth keyboard bad

mash keyboard / key
Meeks typing / key
Frankfurt – US East

Screen render good
Human eye blink

Frankfurt – US West
Screen render bad

pro typist / key
Frankfurt – Hong Kong

average typist / key
"good [web] start/ren...

1 101 201 301 401 501 601 701

1
2
3
9
10
12
15
16.6

27
30
30

90
100
100
100

150
150

160
196

300
700

Sample latencies - Milliseconds - linear plot

Thanks to:
● RTINGS - hardware latency
● Cloudping – network latency
● Web latency
● JsFiddle – typing latency

https://www.rtings.com/keyboard/tests/latency
https://www.cloudping.co/grid
https://edgemesh.com/blog/how-to-improve-your-website-start-render-time
https://jsfiddle.net/7963hvmf/17/

6

Start counting blinks when
you see green …

Stop when you see red.

7

How did you score ?
Reciprocation for beginners:

● 1 → 1000ms per blink
● 2 → 500ms per blink
● 5 → 200ms per blink
● 6 → 167ms per blink
● 7 → 143ms per blink
● 10 → 100ms per blink
● ~130 → ~7.7ms (peregrine falcon)

8

Speeds of things:

tile render + delta good
wired keyboard good

tile render + delta bad
hard disk seek time

bluetooth keyboard good
Frankfurt – Milan

wired keyboard bad
60Hz frame time

Frankfurt – London
bluetooth keyboard bad

mash keyboard / key
Meeks typing / key
Frankfurt – US East

Screen render good
Human eye blink

Frankfurt – US West
Screen render bad

pro typist / key
Frankfurt – Hong Kong

average typist / key
"good [web] start/ren...

1 10 100

1
2

3
9

10
12

15
16.6

27
30
30

90
100
100
100

150
150

160
196

300
700

Sample latencies - Milliseconds - log plot

Frankfurt ↔
London faster
than a bad
bluetooth
keyboard → PC

Blink (fast) and
you miss a
Frankfurt ↔
Eastern US &
back; trip.
Harvard says
blink is - 100-
400ms

Your typing ?

https://jsfiddle.net/7963hvmf/17/

9

Measuring Performance
Don’t optimize before profiling

10

Profiling & testing
Demo servers

● Optimizing what people do
when they try a demo

● Sample once per second
for a week & flamegraph

Internal Collabora users

● daily real-world use

● similar slow burn profiles

Multi-user testing

● Do we see lots of flashing red
invalidation rectangles ?

● How does it “feel” in our community
call with ~20 people.

● Profiling interactive stress testing.

End to end tracing tooling

● Tracking & aligning times from the
three involved processes ...

11

Interactive debugging
Help → About →
 Triple click.

● Lots of useful
data

● Invalidation
areas linger as
red surrounds
after a block red
flash.

● If the screen
flashes red:

● Something is wrong Delta
s

Zero size

updates

Status
Green:
valid
Yellow:
pending
Red:
invalid

In-tile transparent graph of recent history

12

Demo profiling: example flame-graph
What does it mean ?

•17%+ of a
week of
profiling:

● Detecting:
”is it Hybrid
 PDF”?

● Unbelievably
wasteful

● Scan last 4k block
‘AdditionalStreams’
+17%

Width is proportional time

St
ac

k
of

 fu
nc

tio
n

ca
lle

rs

13

Tiles & Deltas

14

Tile Deltas cache / optimization
Store previous tiles

● So we can delta them
● Previously – generated row CRC

while copying & kept all pixels
● Now use RLE bitmask.
● Substantially compressed:

256x256x4 → 256 kB
● RLE compressed: < 26 Kb – 10x size

win
● 90 tile cache (per view) vs. 24 (per

view)
● Plus ~2Mb per view size

saving.

RLE DeltaBitmapRow:

uint64_t _rleMask[4];

size_t _rleSize;

uint32_t *_rleData;

● Split mask bits from Data

● _rleMask bit-set – ‘1’

● copy previous pixel 0 default
transparent

● No need for a hash anymore: just
compare _rleSize & _rleMask.

15

The magic of AVX2 – branch free loop

RGBA RGBA RGBA RGBA

RGBA

Block of next four pixels to RLE …prepend ‘last’
pixel of the
last block

RGBA RGBA RGBA RGBA

Next time’s
‘last’ pixel:

Build comparison
register:

Compare:
cmpeq_epi32 ffffffffffff ffffffffff 0000000 000000ffffffffffffffffffffffff

NB. really 8 pixels
at a time, not
four and more 0’s
and f’s needed ...Magic: floating

point sign mask:
movemask_ps

1 1 0 0 This is our RLE mask.

How many pixels to copy? popcount(RLE mask)
Which ones ? RLE Mask → LUT + AVX2 gather

permutevar8x32_epi32 … is your friend

16

Performance win – around 2x ...
Comparing vs. best hand-optimized CPU RLE code ...

17

perf: surprisingly little delta threading
Thread default 4x wide on deltas … - but all the
work happening in the main thread

https://github.com/CollaboraOnline/online/issues/7374

18

perf: surprisingly little delta threading
An ‘if (work)’ instead of ‘while (work)’ 1 line fix 4x latency redux in delta’ing.

https://github.com/CollaboraOnline/online/issues/7374

19

RGBA & pre-multiplied alpha
Documents rendered to an alpha surface

● Pre-multiplied the sensible way to go so of course:

● HTML5 canvas API – not pre-multiplied
● HTML5 canvas implementation – pre-multiplied [!]

● cf. complaints about not getting back RGBA you put into it …

Change the approach and win

● COOL → un-premultiply → net → canvas API → re-pre-multiply → graphics

● COOL → net → un-premultiply → canvas API → re-pre-multiply → graphics

● Leave the web’s problems to the browser JIT.
● Also RGBA support to Cairo from libpixman, to avoid BGRA conversion.

https://dev.to/yoya/canvas-getimagedata-premultiplied-alpha-150b
https://github.com/whatwg/html/issues/5365

20

Tile Rendering

21

Rendering tiles 40% of your profile ?
Plausibly could be good or is it bad ?

● How does it feel ?

With lots of bogus invalidations

● you see lots of re-rendering ...

22

Lets do a lot less invalidation / render
Desktop app: “Rendering is free”

● COOL: “that’s not cool!”

Avoiding pointless invalidations:

● Whole doc when user joins document

● Whole doc on switching slides

● Whole doc on enlarging call sheet

● Whole doc on click in header/footer

● Entire row when editing calc cell

Saving huge amounts of rendering …

● Really impactful on latency

● Dropping unnecessary 100ms
waits is good …

● Wasted rendering is cheap bandwidth
wise: empty deltas ...

23

Better Latency Hiding
More aggressive Javascript tile caching

● An old tile is better than nothing

● 150 - 250 tiles as canvases
(30-60Mb)

● Shepherd canvas memory better

● JS ‘GC’ is not your friend; need to
explicitly memory manage these.

Store & manage zstd compressed tiles

● 1000 – 2000 tiles zstd compressed
● Keyframes + Deltas

More aggressive pre-fetching

● Next Previous / Next Slide in direction
of movement – 100ms after switch

● Fetching and caching around the view
area

● Tracking global invalidations to
manage larger cache properly.

24

LRU: std::list::size as std::distance()

25

Kill paint to a giant virtual device
Older Writer rendering path:

//Refresh with virtual device
 to avoid flickering.
VclPtrInstance<VirtualDevice>
pVout(*mpOut);
pVout->SetMapMode(mpOut-
>GetMapMode());
Size aSize(VisArea().SSize());
aSize.AdjustWidth(20);
aSize.AdjustHeight(20);
if(pVout->SetOutputSize(aSize))

Un-necessary PC ‘flicker
reduction’ optimization

● We push tiles to JS for a
flicker-free scroll/zoom
anyway.

Giant / whole document area

● Plus a bit.

Back that with lots of memory
& do lots of rendering into it

26

Memory use

27

Lots of space (& time) saving:
Discovered a lurking benchmark

● Allocate 64Mb of RAM, and
performing a CPU rendering
benchmark before loading each
document …

● Good to get initial dirty-page
count down to ~20Mb in one line.

Image caching
● Compressed images are small!

● Not so TIFFs → swap them.
● Cache & Images & glibc allocator

trim on idle → mobile-phone style.

Sparse documents:

● Calc – file save used to allocate all 16k
columns – making many things
slower.

● Calc – discourage users to leap to
limits of document

$ make run-inproc

● Run under massif / valgrind as a
single process in the build-tree …

● Avoiding real-CPU timing jitter:

● flat profiles for no change … vital.

https://git.libreoffice.org/core/+/35275a42610e35f6a4250529ce01450c88b4583d

28

Misc. sillies

29

Week long demo profile: 1.4% time:

30

Kernel craziness: /proc/smaps*
Need to gather PSS for each kit process

● We have 100+ memory maps

● /proc/self/smaps fd passed by UDS between
privilege domains to supervisor process.

● Have to rewind, can’t close & re-open

/proc/smaps_rollup joy !

● Does just what we want: better!
● But: Rewind, re-read: constantly increases

memory reported …
● Dynamic check for Linus’ horror bug fix

https://github.com/torvalds/linux/commit/258f669e7e88c18edbc23fe5ce00a476b924551f

31

Hunspell inner loop ...
int AffixMgr::compound_check_morph(const std::string& word …
 // add a time limit to handle possible
 // combinatorical explosion of the overlapping words
 HUNSPELL_THREAD_LOCAL clock_t timelimit;
 if (wordnum == 0) {
 // get the start time, seeing as we're reusing this set to 0
 // to flag timeout, use clock() + 1 to avoid start clock()
 // of 0 as being a timeout
 timelimit = clock() + 1;
 }
 else if (timelimit != 0 && (clock() > timelimit + TIMELIMIT)) {
 timelimit = 0;
…

Switch to shared memory CLOCK_MONOTONIC ?

auto clock_now = std::chrono::steady_clock::now();

● Thanks to Noel Grandin.

32

Performance
A faster, slicker experience

● Memory trimming on idle: cleans
caches & frees up memory

● Swap out compressed image data
as well as uncompressed

● Faster load of large spreadsheets

● Significantly reduced re-rendering
(even more pending)

● Continual style re-thumbnailing
redux – caching of generated JSON

● Improved tile pre-loading (with
more caching work queued)

● Clamp over-sizing of threads

● Accelerated transparent text
rendering

● Avoid background whole
document renders

● Compress RLE’d tiles on the wire

33Smaller is better!Some older numbers ...

34

Usability & UX
Making things easier to use ...

35

Accessibility
Dark mode + view settings

● Per view settings, allows us to
render views differently –
including various options such as
showing non-printing characters
or spell checking underlines in
different views, in addition to
Dark Mode.

36

Accessibility
Keyboard accelerators

● Expansion for languages

● Keyboard shortcuts have
been expanded to allow all
users to be able to use their
own language’s keyboard
shortcuts when editing a file
collaboratively.

● Holding down the ‘Alt’ key
will also highlight options for
learnability.

38

Accessibility
Page Navigation

● Navigator functionality is
viewable in the sidebar, allowing
you to jump to each section by
simply clicking the headings.

39

Recent Usability Polish

Amazingly users when asked care
mostly about UX efficiency

40

Usability
Font previews

● You can now see a preview of
fonts to see what they look like
before selecting it in the drop
down box.

41

Usability
Page number insertion – familiar,
simplified pop up

● Combining inserting the
required headers, footers, and
page number fields into a
single, easy to use, familiar
dialog for users.

● Featuring all the common
alignment options, support for
a variety of languages, and a
preview.

42

Usability
Change tracking in numbered lists

● When making changes within
numbered lists, the numbering
has now been fixed to show
actual and original numbers
within the document.

43

Usability
AI based translations with DeepL

● Translating text with DeepL
inside a Writer document is as
easy as selecting it, clicking the
“Translate” button and
choosing the target language
from dialog.

44

Future Performance
optimization

45

Future tile wins:
Simple examples:

● Scope for improvement

● eg. ‘typing space’
● Writer: adding page – invalidate

only the end …

● Delta & RLE only rows we know
changed:

● Writer: don’t invalidate to the
end of the row ...

46

Other fun areas:
RGBA rendering

● Currently we render RGB

● Then re-render ‘A’

● Then merge the two, then …

● Great potential 2x win ...
● Already moved to Opacity/Alpha not

Transparency channel

● Thanks to Noel Grandin

Performance regression testing

● Using valgrind to get flat lines ...

Pipelining loading
● Fetch cool.html …

● <async CheckFileInfo>
● <async document load>

● cool.html’s JS connects on websocket
● gets a pre-loaded document.
● <currently we start loading here>

● Halve the load time ?
● Patch in review from Ashod

Nakashian.
● Also: to come: asynchronous

locking ...

47

With thanks to our Partners,
Customers & Community !

48

Conclusions
Try out the latest Collabora Online 23.05.8+ and/or 24.04 ...

● Already smooth, getting smoother & more beautiful.

● Architecture: a bet on CPUs and networks getting faster & cheaper

● In race with the hardware folk to get the biggest wins.
● Modern CPUs are -amazingly- quick ...

Still lots of fun to be had: do get involved !

● Lots of easy UX wins and polish to work on: JS, CSS, C++ to taste ...

● Follow our calc & writer tracker performance bugs: a profile a week …

● Get involved in COOL and LibreOffice Technology

https://github.com/CollaboraOnline/online/issues/6893
https://github.com/CollaboraOnline/online/issues/8051
https://collaboraonline.github.io/
https://www.libreoffice.org/community/get-involved/

Thank you!

@CollaboraOffice
hello@collaboraoffice.com
www.collaboraoffice.com

Oh, that my words were recorded, that they were written on
a scroll, that they were inscribed with an iron tool on lead,
or engraved in rock for ever! I know that my Redeemer lives,
and that in the end he will stand upon the earth. And
though this body has been destroyed yet in my flesh I will
see God, I myself will see him, with my own eyes - I and not
another. How my heart yearns within me. - Job 19: 23-27

mailto:hello@collaboraoffice.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

