
Caolán McNamara
caolan.mcnamara@collabora.com

Thorsten Behrens
thorsten.behrens@allotropia.de

Collabora Online: WASM



2

Collabora Online: Typical Overview
Browser Server

JavaScript
Front End

Back End, C++: GCC to Native Code 

WSD

Kit Instance

Kit Instance

Kit Instance

Kit Instance



3

No server and it doesn’t work of 
course



4

Kit Instance
The big binary piece

● Links to LibreOffice core

● du -ch of all core shared libs is 317MB

● One instance per document

● Server mediates between browser javascript clients and kit, 
forwarding client requests to kit and tiles, etc from kit to clients



5

Portability
Core Ports

● OS: Linux, Windows, macOS, iOS, Android, *BSD, etc

● UNO ABI Archs: x86, x86_64, aarch64, alpha, hppa, ia64, m68k, 
mips[64], power[64], s390[x], sparc[64], etc

Collabora Online Ports 

● Linux, iOS, Android, *BSD, etc

● Less low level ABI requirements



6

Web Assembly
High performance binary executable format

● Available in browsers for years

● Runs in the same sandbox as JavaScript

● Emscripten compiles C++ to WASM with LLVM

● Website Security Policy determines if it is allowed to be executed



7

LibreOffice WASM Port
allotropia WASM Port

● Port of LibreOffice to WebAssembly aka WASM using the 
Emscripten toolchain.

● https://wiki.documentfoundation.org/Development/WASM
● Gory details on porting to WASM

● https://git.libreoffice.org/core/+/refs/heads/master/static/
README.wasm.md

https://wiki.documentfoundation.org/Development/WASM


8

Collabora Online: COWASM Overview
Browser

JavaScript
Front End

Back End, Emscripten to Web Assembly

WSD Kit Instance



9

COWASM
allotropia WASM Port

● core+online ported to wasm

● Normal online server when requested by client redirects to a wasm page 
which triggers downloading the wasm binary

● Get this just right and the wasm can be cached so it’s a one time 
download

● Feed it a copy of the document

● COWASM embedded online server executes in the browser

● JavaScript client communicates with embedded COWASM similar to normal 
server



10

Collabora Online, Offline: COWASM



11

Security Policy Headache #1
Collabora Online integration

● Intricate dance of multiple web applications and servers

● SPECTRE

● https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)
● So Browsers super paranoid about allowing wasm to execute
● https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global_Objects/SharedArrayBuffer
● Basically both the embedding app and embedded app have to agree to that 

arrangement

https://en.wikipedia.org/wiki/Spectre_(security_vulnerability)


12

Security Policy Headache #2
Nextcloud

● Thanks to Julius Härtl for bootstrapping how to get the Nextcloud richdocuments integration 
to provide the appropriate security content headers from that side

● https://github.com/nextcloud/richdocuments/pull/3260
● Then can set matching ones from the Collabora Online side to get the browsers to allow 

WASM
● Not plain sailing yet. Configure CO for reverse-proxy mode, so all data appears from the 

same server hosting Nextcloud
● And chrome needs https
● And maybe some sites pull logos, etc from a third location that doesn’t have the magic 

headers
● So make the chain of adding headers conditional on wasm enabled in Collabora Online

https://github.com/nextcloud/richdocuments/pull/3260


13

Practicalities

● Build time resources
● Linking takes > 25G RAM

● Cross compiling
● Cross compiling is always a little fraught
● podman pull public.ecr.aws/allotropia/libo-builders/wasm

● Threading

● A little unclear if number of threads reported in wasm is threads the system has or the 
number of threads wasm can use

● Incomplete
● Just one way online→offline for now



14

But it works



15

Video




Thank you!

@CollaboraOffice
hello@collaboraoffice.com
www.collaboraoffice.com

mailto:hello@collaboraoffice.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

