
Attila Szűcs
Software Engineer
Attila.szucs@collabora.com

Huge documents in
LibreOffice (Zip64 support)

2

What is ZIP64 and why it is needed

● Most document formats are compressed with zip

● The original .ZIP file format was designed at year 1989
old system – old limitations
e.g. filesize stored in 32bit = max 4gb
extensible

● technology advanced -> limitations reached

● Year 2001: ZIP64 extension

3

ZIP64 new limitations
1) uncompressed file size: 32bit -> 64bit (4gigaB->16exaB)

2) compressed archive size: 32bit -> 64bit

3) file count: 16bit -> 32bit (64k->4g)

4) disk count: 16bit -> 32bit

5) Some less important internal limitations
like size of the central directory

For most LibreOffice Documents, old ZIP limitations are enough,
practically only uncompressed filesize can be problem for a while.

Where are these data stored in the zip archive?

4

Original ZIP format
ZIP archive built from smaller parts (Records)
Some of the record start with a signature

local file header 1
file data 1
[data descriptor 1]
 ...
local file header n
file data n
[data descriptor n]
 ...
Central directory

File header 1
 ...
File header n
 ...
End of central directory record

5

New/extended records to store data

● Local file header

● File header (In Central directory)

● Data descriptor

● zip64 end of central directory record

● zip64 end of central directory locator

Extended records
Implemented export/import in LibreOffice

New records
Not implemented in LibreOffice

ZIP64 is not 1 property for the entire archive.
Every record can be independently in ZIP64 mode or not.

Extra field

6

Title of the slide
0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x000 Signature Version Flags Compr
ession

Mod
time

Mod
Date

Crc-32

0x010 Crc-32 Compressed
Size

Uncompressed
Size

File
Name len

Extra
field len

0x020 File Name (variable size)

0x030 Extra field (variable size)

Local file header:

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x000 ID Size Extra data (variable size)

0x010 1 28* Uncompressed size Compressed-

0x020 -size Relative offset header Disk start number

If compressed size, (or/and?) Uncompressed size == 0xFFFFFFFF
 then the real value in the extra field

Extra field:

*Can be smaller. For example: 16. The Zip Standard does not mention or forbid it.

General extra field

Zip64

7

Data descriptor

● Signature – 4 byte

● Crc-32 – 4 byte

● Compressed size – 4 byte

● Uncompressed size -4 byte

Rarely used. Designed for file streaming.

Not in the standard but commonly used.

8 byte in case of Zip64

8

The standard
● Designed to be well expandable

● Allow a lot of things.. even senseless things

● Commonly used many extension

● Complex, many special cases

(encrypted, compressed, streamed, split, self extract, ...)

● Not exact

● Hard to prepare for every use case

“4.3.9.3 Although not originally assigned a signature, the value
 0x08074b50 has commonly been adopted as a signature value
 for the data descriptor record.”

9

Test case

Unittest: small zip64 files. (fast to load)

Manual test for 4gb+ (content.xml) size (works but slow)
it is a challenge to create the testfile.
Release: several minutes to import.
Debug: it was like 40 minutes for me.

10

Future possibilities

● load/save zip64 end of central directory record / locator

● Make sure all usage is 64bit compatible

1 local sal_uInt32 variable, function parameter, or return value can break

everything

Compressed size 32bit→64bit (Partially implemented)
What need:

Some code pointers:
● sal_Int32 ZipFile::readCEN()
● void ZipOutputStream::writeCEN(const ZipEntry &rEntry)
● sal_Int32 Deflater::doDeflateBytes
● void ZipFile::recover()

Thank you!
By Attila Szűcs

@CollaboraOffice
hello@collaboraoffice.com
www.collaboraoffice.com

mailto:hello@collaboraoffice.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

