
By Michael Meeks
General Manager

@michael_meeks michael.meeks@collabora.com 

COOL performance
making collaboration slick & quick.

“Stand at the crossroads and look; ask for the 
ancient paths, ask where the good way is, and 

walk in it, and you will find rest for your souls...” - 
Jeremiah 6:16

mailto:michael.meeks@collabora.com
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Outline
Basics of how COOL works

LibreOffice core Technology
● Wiggly lines

COOLWSD / Kit
● I/O and queueing

Javascript:
● Websocket
● String / Image handling & 

async
● DOM mutation
● JQuery / Select2

Profiling, tools & future



 .. 3

How Collabora Online (COOL) works:
Browser

● Thin Javascript.
● Overlays for cursor / selection etc.
● Pan / zoom interpolation / shape 

overlays for fluid movement

WSD

● Web Services Daemon – multiplexes all 
messages to/from the Kit

Kit

● A securely contained & isolated 
LibreOffice

● Streams ‘tiles’ to the client as PNG 
images

● has view of whole document: 
unusually zoomed out.

● Has multiple views – one per user.

User

● cognitive biases & perceptual fun.
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LibreOffice core Tech.
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Performance Testing & typing ...
● Customer feedback: “we tested it with eight people doing 

random typing”
● Profiled this use-case; it is/was slow

● The mis-spelling squiggly-line (cf. wrong language 
setting?) ...

● an unfeasible amount of CPU ~90% of rendering time
● A most beautiful sub-divided, AA b-spline but … ~2 pixels 

high mostly.
● Fixed in 6.4.10

● Mashing the keyboard a pathological
case: we’re still working on improving.

● Test your speed here 
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https://jsfiddle.net/7963hvmf/17/
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JSON generation
Lots of events generate JSON

● Particularly side-bar & dialog – description of widgets:
● Looots of JSON: DumpAsPropertyTree

● Switch from:

-boost::property_tree::ptree DumpAsPropertyTree()

+void DumpAsPropertyTree(tools::JsonWriter& rJsonWriter)

● Instead of deep duplicating & returning ptree’s
● Implement a new JsonWriter

● Ultimately a stream type interface anyway.
● Disappears from the profile.

● Thanks to Noel Grandin
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Image scaling & rendering
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Continual re-scaling of bitmaps
We had a nice image scaling cache:

● Problem: only caches one size per 
image

● For (random) reasons: not working 
nicely on Android.

● Now we have a multi-resolution scaled 
image cache:

● Hugely faster, particularly for large 
zoom-out

Online

● Now we scale the cache size based
on the number of open views

● Great for multiple users at different 
zooms

● Thanks to Lubos Lunak



 .. 11

Pointless ~O(n^3) in SwRegionRects
SwRegionRects::Compress()

● Notionally saves effort & space by compressing 
invalidated rectangles together.

● Particularly problematic with COOL – since the 
document is always visible in a gigantic pseudo-view.

Now only ~O(n^2) in number of regions

● https://gerrit.libreoffice.org/c/core/+/122121

Thanks to Lubos Lunak

Should accelerate all large 
writer documents with 
complex invalidations.

https://gerrit.libreoffice.org/c/core/+/122121
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Calc: ScDocument::GetPrintArea
Called surprisingly often

● Switching views, when re-rendering a 
region etc.

Pixel area dependent on zoom

● Row heights vary in real height based 
on zoom level

● But all look the same height.

So – scan from the beginning ...

Cost is all in:

● ScTable::GetRowForHeight(sal_uLong 
nHeight)

Now massively faster

● Walks both ‘hidden’ and ‘height’ span-
trees concurrently – in jumps.

● Instead of iterating row by row.
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And much more in core ...
Noel Grandin’s work

● Endless profiling &  improvement:

Lots of misc other pieces

● Faster file opening
● Better font caching to accelerate text 

rendering
● Quicker scrolling
● Quicker spreadsheet filtering
● Faster large chart insertion/setup

Don’t paint to windows

● In LOK mode we used to often 
calculate & paint to an invisible 1x1 
pixel window

● Avoid repeated writer layout calls too.

Detail overload ...
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Web Service Daemon / 
Kit
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Shuffling vectors ...
Buffering outgoing socket data: std::vector<char>

● Transmit from the beginning and then erase(begin(), begin() + sentBytes)
● Unfortunately: SSL: 16k max writable chunks
● 20Mb images / document downloads common
● Shuffling ~10Mb average - 1200x times down a vector – not fast.

Buffer class

● Wrap a std::vector<char>
● Don’t erase – have an offset: send 1Mb at a time before shuffling

● bingo – 64x faster.
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STL / Android amazement
STL on Android is abysmal

● Thankfully we no longer have to binary-patch it at run-time; but ...

vector::~vector<char>

● Very high on the profile – doing some ‘0’ assignment in a loop while destroying ?
● allocation – understandably slow – but freeing [!] ...
● More time spent allocating, wiping & freeing std::vector<char>
● Than rendering document content: huh !
● calloc buffer to render into instead.
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And here it is:
Android std::vector <char> folly: Scaling bitmaps, 

rendering tiles etc.
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Merge key-events
Under heavy-load

● Can’t process key-events in the time they come in:

Input event compression:

● Kill un-necessary keyup events, then:

child-foo textinput id=0 text=f

child-foo textinput id=0 text=o

child-foo textinput id=0 text=o → Turn it into:

child-foo textinput id=0 text=foo
● So we can catch-up … (also for removetextcontext (backspace/delete) events)
● Thanks to Tor Lillqvist.
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Asynchronous save ...
Previously

● Paused all document editing during save 
+ up-load

Up-load

● Thought to be fast: data-center ↔ data-
center internal network link & storage.

● But … some backends: several seconds
● So re-worked to continue editing while 

we up-load.
● Thanks to Ashod Nakasian

Solves autosave ‘stalls’ while typing

Even so some things sync still:

● Rename for example
● So be pretty there:
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Javascript
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End to end profiling
Catching badness across the board

● Found that we had been optimizing the 
wrong piece.

● So implemented a new end-to-end 
profiler.

Core: ProfileZone

● Passing data back from Kit → WSD

JS: TraceEvent logging

● Passing data back from browser → WSD

WSD:

● ProfileZone code too.

To enable:

● Tripple-click in Help→About
● [x] Performance Tracing
● Needs: trace_event[@enable] config option in 

loolwsd.xml.

Visualize:

● Load trace in chrome://tracing

Thanks to Tor Lillqvist

chrome://tracing
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We thought JS in the browser is fast

● We obsessed about network latency & server-side performance.

● We were mostly wrong.

● (though lots of sillies on the server-side too ...)

Please be careful with your JS

● DOM mutation, Canvas re-rendering, ‘elegant’ code using 

unusual libraries.

Profiling: Javascript – the surprise
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Watch each tile render: ( spreadsheet with red background)
      Websocket messages processed one by one at idle …

do a re-render → we see an animation of each tile rendering
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Simple solution: (worth avoiding Promises too?)
// The problem: if we process one websocket message at a time, the
// browser -loves- to trigger a re-render as we hit the main-loop,
// this takes ~200ms on a large screen, and worse we get
// producer/consumer issues that can fill a multi-second long
// buffer of web-socket messages in the client that we can't
// process so - slurp and the emit at idle - its faster to delay!
_slurpMessage: function(e) {

var that = this;
if (!this._slurpQueue || !this._slurpQueue.length) {

this._queueSlurpEventEmission(); // process in 1ms timer
that._slurpQueue = [];

}
this._extractTextImg(e);
that._slurpQueue.push(e);

},
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_emitSlurpedEvents: function() {
    this._map._docLayer.pauseDrawing();

try {
for (var i = 0; i < queueLen; ++i) {

var evt = this._slurpQueue[i];

if (evt.isComplete()) {
try {

// it is - are you ?
this._onMessage(evt);

}
             …

Event emission:
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Websocket → base64 imgURL

lots of gc pressure & hence time

lots of string copying, slow ...
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// read the tile data
var strBytes = '';
for (var i = 0; i < data.length; i++) {

strBytes += String.fromCharCode(data[i]);
}
img = 'data:image/png;base64,' + window.btoa(strBytes);

// convert to string of bytes without blowing the stack if data is large.
_strFromUint8: function(data) {

var i, chunk = 4096;
var strBytes = '';
for (i = 0; i < data.length; i += chunk)

strBytes += String.fromCharCode.apply(null, data.slice(i, i + chunk));
strBytes += String.fromCharCode.apply(null, data.slice(i));
return strBytes;

},
…
img = 'data:image/png;base64,' + window.btoa(this._strFromUint8(data));

Before code:

After code:
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Invisibly repeating the same work.
Now we: delay all the cursor related onScrollTo work / 
etc. until we have processed our whole incoming 
queue
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~500 ms

Table handle DOM mutation

We were continually re-creating & destroying table handles for
      multiple redundant tableselected messages:
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_updateTableMarkers: function() {
        if (this._currentTableData === undefined)
                return; // not writer, no table select
        if (this._currentTableMarkerJson === this._lastTableMarkerJson)
                return; // identical table setup.
        this._lastTableMarkerJson = this._currentTableMarkerJson;

15x faster do it just once.

avoid destroying & re-creating
      identical table handles
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‘messagesdone’ to do it right easily:

New ‘messagesdone’ event
● fired when we have emitted 

all complete slurped 
messages

● If you’re updating view-state, 
re-render once at the end ...
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JQuery plugin thrash:
Select2 → argh !

● That 31337 new JQuery 
plugin

● 800ms on startup of thrash
● Saw this with jsdom → 

noticed it … ~5s+ of CPU time

Thanks to Mert for fixing it
● Using native JS now
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Calc: client side rendering ...
Spreadsheets

● Header / row column sizing
● Replicate the rounding nightmare in 

the client to avoid sending it later

Render grid-lines on the client

● Instant <ctrl>-<down-arrow>
● Possible to do some cursor movement

locally too in future.
● Potentially render ‘cell’ tiles.
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Ongoing Work ...
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Deltas ...
private/mmeeks/deltas

● Monotonic tile-id updates
● Diff tiles to previous versions & send 

a binary patch → Time compression.
● Deflate too
● Inflate in JS
● big B/W reduction.

CanvasSections:
● dirtying – to avoid re-paint

Better JS usage

● Async loading of images:
● Horribly slow
● Can’t be controlled / sequenced by JS

● Seems better to unpack pixels & send to 
Canvas manually

● (amazingly)

Cursor / tile delta synchronization

Work ongoing – not yet merged.
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Other in-progress wins
Reduce protocol thrash

● Avoid redundant notifications:
● eg. per key-stroke:

statechanged: .uno:LanguageStatus=Engl
ish (USA);en-US 
statechanged: .uno:InsertPageHeader={} 
statechanged: .uno:InsertPageFooter={} 
statechanged: .uno:Undo=enabled 
statechanged: .uno:Orientation=IsPortr
ait 
statechanged: .uno:TrackedChangeIndex= 
tabstoplistupdate: {    "tabstops": 
""} 

Each change:

● Forces a spin of the browser main-loop 
to read from the websocket.

● On a ‘busy’ browser – adds lots of 
latency.

Others happen too fast:

● statechanged: .uno:StateWo
rdCount=3 words, 13 
characters 
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Testing tools ...
Perf-test

cd browser ; make perf-test
● Built on sample customer writer odt
● Plenty of complex tables, layout, text
● Runs Javascript as-is

● jsdom, jscanvas
● Six concurrent users

● Jump to a bookmark
● Do random typing

Coolstress

./coolstress wss://localhost:9980 
test/data/hello-world.odt 
test/traces/writer-hello-shape.txt

● Loads a document, and replays a trace
● cf. test/traces for sample editing 

sessions
● Approximates responses of JS client
● Very scalable – easy to run 300 

simulated clients at once & measure 
latency / metrics.
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Conclusions: much faster
Much improved performance work for Collabora Online

● Lots of this in LibreOffice 7.2, more coming in 7.3

● Much of it shipping in COOL 6.4.11, more just arrived in COOL 21.11

More work to do here

● more stress testing & profiling is underway

● We’re not even half way done yet.



Collabora’s 
mission:
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Open
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ROCK
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Thanks & Questions

By Michael Meeks
@mmeeks @CollaboraOffice 
CollaboraOffice.com
CollaboraOffice.com/CODE
michael.meeks@collabora.com

Oh, that my words were recorded, that they were 
written on a scroll, that they were inscribed with an 
iron tool on lead, or engraved in rock for ever! I know 
that my Redeemer lives, and that in the end he will 
stand upon the earth. And though this body has been 
destroyed yet in my flesh I will see God, I myself will 
see him, with my own eyes - I and not another. How 
my heart yearns within me. - Job 19: 23-27
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