
By Michael Meeks
General Manager

@michael_meeks michael.meeks@collabora.com

COOL performance
making collaboration slick & quick.

“Stand at the crossroads and look; ask for the
ancient paths, ask where the good way is, and

walk in it, and you will find rest for your souls...” -
Jeremiah 6:16

mailto:michael.meeks@collabora.com

 .. 2

Outline
Basics of how COOL works

LibreOffice core Technology
● Wiggly lines

COOLWSD / Kit
● I/O and queueing

Javascript:
● Websocket
● String / Image handling &

async
● DOM mutation
● JQuery / Select2

Profiling, tools & future

 .. 3

How Collabora Online (COOL) works:
Browser

● Thin Javascript.
● Overlays for cursor / selection etc.
● Pan / zoom interpolation / shape

overlays for fluid movement

WSD

● Web Services Daemon – multiplexes all
messages to/from the Kit

Kit

● A securely contained & isolated
LibreOffice

● Streams ‘tiles’ to the client as PNG
images

● has view of whole document:
unusually zoomed out.

● Has multiple views – one per user.

User

● cognitive biases & perceptual fun.

 4

LibreOffice core Tech.

 .. 5

Performance Testing & typing ...
● Customer feedback: “we tested it with eight people doing

random typing”
● Profiled this use-case; it is/was slow

● The mis-spelling squiggly-line (cf. wrong language
setting?) ...

● an unfeasible amount of CPU ~90% of rendering time
● A most beautiful sub-divided, AA b-spline but … ~2 pixels

high mostly.
● Fixed in 6.4.10

● Mashing the keyboard a pathological
case: we’re still working on improving.

● Test your speed here

0

5

10

15

20

25

30

35

Mashing the keyboard as a test

~10x as bad as reality

Average Typist
Pro. typist
Meeks short-words
mash the keyboard

ch
ar

ac
te

rs
 p

er
 s

ec
on

d

https://jsfiddle.net/7963hvmf/17/

 .. 8

JSON generation
Lots of events generate JSON

● Particularly side-bar & dialog – description of widgets:
● Looots of JSON: DumpAsPropertyTree

● Switch from:

-boost::property_tree::ptree DumpAsPropertyTree()

+void DumpAsPropertyTree(tools::JsonWriter& rJsonWriter)

● Instead of deep duplicating & returning ptree’s
● Implement a new JsonWriter

● Ultimately a stream type interface anyway.
● Disappears from the profile.

● Thanks to Noel Grandin

 .. 9

Image scaling & rendering

 .. 10

Continual re-scaling of bitmaps
We had a nice image scaling cache:

● Problem: only caches one size per
image

● For (random) reasons: not working
nicely on Android.

● Now we have a multi-resolution scaled
image cache:

● Hugely faster, particularly for large
zoom-out

Online

● Now we scale the cache size based
on the number of open views

● Great for multiple users at different
zooms

● Thanks to Lubos Lunak

 .. 11

Pointless ~O(n^3) in SwRegionRects
SwRegionRects::Compress()

● Notionally saves effort & space by compressing
invalidated rectangles together.

● Particularly problematic with COOL – since the
document is always visible in a gigantic pseudo-view.

Now only ~O(n^2) in number of regions

● https://gerrit.libreoffice.org/c/core/+/122121

Thanks to Lubos Lunak

Should accelerate all large
writer documents with
complex invalidations.

https://gerrit.libreoffice.org/c/core/+/122121

 .. 12

Calc: ScDocument::GetPrintArea
Called surprisingly often

● Switching views, when re-rendering a
region etc.

Pixel area dependent on zoom

● Row heights vary in real height based
on zoom level

● But all look the same height.

So – scan from the beginning ...

Cost is all in:

● ScTable::GetRowForHeight(sal_uLong
nHeight)

Now massively faster

● Walks both ‘hidden’ and ‘height’ span-
trees concurrently – in jumps.

● Instead of iterating row by row.

 .. 13

And much more in core ...
Noel Grandin’s work

● Endless profiling & improvement:

Lots of misc other pieces

● Faster file opening
● Better font caching to accelerate text

rendering
● Quicker scrolling
● Quicker spreadsheet filtering
● Faster large chart insertion/setup

Don’t paint to windows

● In LOK mode we used to often
calculate & paint to an invisible 1x1
pixel window

● Avoid repeated writer layout calls too.

Detail overload ...

 14

Web Service Daemon /
Kit

 .. 15

Shuffling vectors ...
Buffering outgoing socket data: std::vector<char>

● Transmit from the beginning and then erase(begin(), begin() + sentBytes)
● Unfortunately: SSL: 16k max writable chunks
● 20Mb images / document downloads common
● Shuffling ~10Mb average - 1200x times down a vector – not fast.

Buffer class

● Wrap a std::vector<char>
● Don’t erase – have an offset: send 1Mb at a time before shuffling

● bingo – 64x faster.

 .. 16

STL / Android amazement
STL on Android is abysmal

● Thankfully we no longer have to binary-patch it at run-time; but ...

vector::~vector<char>

● Very high on the profile – doing some ‘0’ assignment in a loop while destroying ?
● allocation – understandably slow – but freeing [!] ...
● More time spent allocating, wiping & freeing std::vector<char>
● Than rendering document content: huh !
● calloc buffer to render into instead.

 .. 17

And here it is:
Android std::vector <char> folly: Scaling bitmaps,

rendering tiles etc.

 .. 18

Merge key-events
Under heavy-load

● Can’t process key-events in the time they come in:

Input event compression:

● Kill un-necessary keyup events, then:

child-foo textinput id=0 text=f

child-foo textinput id=0 text=o

child-foo textinput id=0 text=o → Turn it into:

child-foo textinput id=0 text=foo
● So we can catch-up … (also for removetextcontext (backspace/delete) events)
● Thanks to Tor Lillqvist.

 .. 19

Asynchronous save ...
Previously

● Paused all document editing during save
+ up-load

Up-load

● Thought to be fast: data-center ↔ data-
center internal network link & storage.

● But … some backends: several seconds
● So re-worked to continue editing while

we up-load.
● Thanks to Ashod Nakasian

Solves autosave ‘stalls’ while typing

Even so some things sync still:

● Rename for example
● So be pretty there:

 20

Javascript

 .. 21

End to end profiling
Catching badness across the board

● Found that we had been optimizing the
wrong piece.

● So implemented a new end-to-end
profiler.

Core: ProfileZone

● Passing data back from Kit → WSD

JS: TraceEvent logging

● Passing data back from browser → WSD

WSD:

● ProfileZone code too.

To enable:

● Tripple-click in Help→About
● [x] Performance Tracing
● Needs: trace_event[@enable] config option in

loolwsd.xml.

Visualize:

● Load trace in chrome://tracing

Thanks to Tor Lillqvist

chrome://tracing

 .. 22

We thought JS in the browser is fast

● We obsessed about network latency & server-side performance.

● We were mostly wrong.

● (though lots of sillies on the server-side too ...)

Please be careful with your JS

● DOM mutation, Canvas re-rendering, ‘elegant’ code using

unusual libraries.

Profiling: Javascript – the surprise

 .. 23

Watch each tile render: (spreadsheet with red background)
 Websocket messages processed one by one at idle …

do a re-render → we see an animation of each tile rendering

 .. 24Same problem with async image load from .src=<base64 URL>

Simple solution: (worth avoiding Promises too?)
// The problem: if we process one websocket message at a time, the
// browser -loves- to trigger a re-render as we hit the main-loop,
// this takes ~200ms on a large screen, and worse we get
// producer/consumer issues that can fill a multi-second long
// buffer of web-socket messages in the client that we can't
// process so - slurp and the emit at idle - its faster to delay!
_slurpMessage: function(e) {

var that = this;
if (!this._slurpQueue || !this._slurpQueue.length) {

this._queueSlurpEventEmission(); // process in 1ms timer
that._slurpQueue = [];

}
this._extractTextImg(e);
that._slurpQueue.push(e);

},

 .. 25

_emitSlurpedEvents: function() {
 this._map._docLayer.pauseDrawing();

try {
for (var i = 0; i < queueLen; ++i) {

var evt = this._slurpQueue[i];

if (evt.isComplete()) {
try {

// it is - are you ?
this._onMessage(evt);

}
 …

Event emission:

 .. 26

Websocket → base64 imgURL

lots of gc pressure & hence time

lots of string copying, slow ...

 .. 27

// read the tile data
var strBytes = '';
for (var i = 0; i < data.length; i++) {

strBytes += String.fromCharCode(data[i]);
}
img = 'data:image/png;base64,' + window.btoa(strBytes);

// convert to string of bytes without blowing the stack if data is large.
_strFromUint8: function(data) {

var i, chunk = 4096;
var strBytes = '';
for (i = 0; i < data.length; i += chunk)

strBytes += String.fromCharCode.apply(null, data.slice(i, i + chunk));
strBytes += String.fromCharCode.apply(null, data.slice(i));
return strBytes;

},
…
img = 'data:image/png;base64,' + window.btoa(this._strFromUint8(data));

Before code:

After code:

 .. 28

Invisibly repeating the same work.
Now we: delay all the cursor related onScrollTo work /
etc. until we have processed our whole incoming
queue

 .. 29

~500 ms

Table handle DOM mutation

We were continually re-creating & destroying table handles for
 multiple redundant tableselected messages:

 .. 30

_updateTableMarkers: function() {
 if (this._currentTableData === undefined)
 return; // not writer, no table select
 if (this._currentTableMarkerJson === this._lastTableMarkerJson)
 return; // identical table setup.
 this._lastTableMarkerJson = this._currentTableMarkerJson;

15x faster do it just once.

avoid destroying & re-creating
 identical table handles

 .. 31

‘messagesdone’ to do it right easily:

New ‘messagesdone’ event
● fired when we have emitted

all complete slurped
messages

● If you’re updating view-state,
re-render once at the end ...

 .. 32

JQuery plugin thrash:
Select2 → argh !

● That 31337 new JQuery
plugin

● 800ms on startup of thrash
● Saw this with jsdom →

noticed it … ~5s+ of CPU time

Thanks to Mert for fixing it
● Using native JS now

 .. 33

Calc: client side rendering ...
Spreadsheets

● Header / row column sizing
● Replicate the rounding nightmare in

the client to avoid sending it later

Render grid-lines on the client

● Instant <ctrl>-<down-arrow>
● Possible to do some cursor movement

locally too in future.
● Potentially render ‘cell’ tiles.

 34

Ongoing Work ...

 .. 35

Deltas ...
private/mmeeks/deltas

● Monotonic tile-id updates
● Diff tiles to previous versions & send

a binary patch → Time compression.
● Deflate too
● Inflate in JS
● big B/W reduction.

CanvasSections:
● dirtying – to avoid re-paint

Better JS usage

● Async loading of images:
● Horribly slow
● Can’t be controlled / sequenced by JS

● Seems better to unpack pixels & send to
Canvas manually

● (amazingly)

Cursor / tile delta synchronization

Work ongoing – not yet merged.

 .. 36

Other in-progress wins
Reduce protocol thrash

● Avoid redundant notifications:
● eg. per key-stroke:

statechanged: .uno:LanguageStatus=Engl
ish (USA);en-US
statechanged: .uno:InsertPageHeader={}
statechanged: .uno:InsertPageFooter={}
statechanged: .uno:Undo=enabled
statechanged: .uno:Orientation=IsPortr
ait
statechanged: .uno:TrackedChangeIndex=
tabstoplistupdate: { "tabstops":
""}

Each change:

● Forces a spin of the browser main-loop
to read from the websocket.

● On a ‘busy’ browser – adds lots of
latency.

Others happen too fast:

● statechanged: .uno:StateWo
rdCount=3 words, 13
characters

 .. 37

Testing tools ...
Perf-test

cd browser ; make perf-test
● Built on sample customer writer odt
● Plenty of complex tables, layout, text
● Runs Javascript as-is

● jsdom, jscanvas
● Six concurrent users

● Jump to a bookmark
● Do random typing

Coolstress

./coolstress wss://localhost:9980
test/data/hello-world.odt
test/traces/writer-hello-shape.txt

● Loads a document, and replays a trace
● cf. test/traces for sample editing

sessions
● Approximates responses of JS client
● Very scalable – easy to run 300

simulated clients at once & measure
latency / metrics.

 38

Conclusions: much faster
Much improved performance work for Collabora Online

● Lots of this in LibreOffice 7.2, more coming in 7.3

● Much of it shipping in COOL 6.4.11, more just arrived in COOL 21.11

More work to do here

● more stress testing & profiling is underway

● We’re not even half way done yet.

Collabora’s
mission:

Make
Open
Source
ROCK

 40

Thanks & Questions

By Michael Meeks
@mmeeks @CollaboraOffice
CollaboraOffice.com
CollaboraOffice.com/CODE
michael.meeks@collabora.com

Oh, that my words were recorded, that they were
written on a scroll, that they were inscribed with an
iron tool on lead, or engraved in rock for ever! I know
that my Redeemer lives, and that in the end he will
stand upon the earth. And though this body has been
destroyed yet in my flesh I will see God, I myself will
see him, with my own eyes - I and not another. How
my heart yearns within me. - Job 19: 23-27

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40

