
Handling PDF digital 
signatures with 
PDFium
By Miklos Vajna
Software Engineer at Collabora Productivity

2021-02-07



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 2 / 20 

About Miklos

From Hungary

● More details:
https://www.collaboraoffice.com/about-us/ 

Google Summer of Code 2010 / 2011

● Rewrite of the Writer RTF import/export

Then a full-time LibreOffice developer for SUSE

Now a contractor at Collabora

https://www.collaboraoffice.com/about-us/


Handling PDF digital 
signatures in 

LibreOffice with 
PDFium



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 4 / 20 

The digital signing matrix

“The” document signing has many factors

● Signing or verification

● Visible signatures or invisible ones

● Different document formats:
PDF and editable formats

● Different platforms: NSS and MSCNG

● Different certificate types: X509 or GPG

● Different encryption algorithms: ECDSA or RSA

● Different hash algorithms: e.g. SHA-1 or SHA-256

● When it “doesn’t work”: several combinations

(via techcrunch.com)

https://techcrunch.com/2019/03/18/how-to-build-the-matrix/


Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 5 / 20 

Document formats: PDF, ODF and OOXML

Initially just ODF, then PDF and OOXML

● Verification:

● Check if the digest (hash) matches

● Validate the certificate

● Check if the whole document is signed

● PDF: tricky

● Need incremental updates for multiple signatures

● Want to detect modify-

after-sign

● OOXML is ugly,

leaks your details:

<WindowsVersion>6.1</WindowsVersion>
<OfficeVersion>16.0</OfficeVersion>
<ApplicationVersion>16.0</ApplicationVersion>
<Monitors>1</Monitors>
<HorizontalResolution>1280</
HorizontalResolution>
<VerticalResolution>800</VerticalResolution>
<ColorDepth>32</ColorDepth>



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 6 / 20 

Platforms: NSS and MSCNG

Multiple crypto backends in xmlsecurity/

● Not own crypto, just using NSS on Linux

● Is this certificate valid?

● Tricky question, delegate the decision to Mozilla

● MSCNG on Windows

● CryptoAPI for certificate handling

● CNG for actual hashing and encryption

● CryptoAPI itself doesn’t support ECDSA

(via mozilla.org)

https://www.mozilla.org/en-US/firefox/new/


Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 7 / 20 

Certificate types: X509 and GPG

PDF and OOXML mandates X509

● ODF supports both, see the GPG effort from CIB

● Governments like to give e-IDs to citizens

● These are also based on X509



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 8 / 20 

Underlying encryption: RSA and ECDSA

RSA worked even back in the OOo times

● ECDSA is more tricky

● All XML-based signing is done via libxmlsec:

● Its mscrypto backend used CryptoAPI → no ECDSA

● A whole new mscng backend was needed in libxmlsec

● Now it’s on par with NSS

● Works nicely with e.g. my own
Hungarian e-ID :-)

● i.e. not only with software

certificates



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 9 / 20 

Underlying hash algorithm: MD* or SHA*

OOo defaulted to SHA1

● Nowadays only SHA-256 is considered to be modern

● Needed to upstream the huge patchset of libxmlsec

● Then could upgrade libxmlsec to a modern version

● Which gives SHA-256 support for free



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 10 / 20 

PDF signature verification

Using an own tokanizer first, nothing

provided what we needed:

● Poppler was out of process, painful

● PDFium did not have a signature API

● We had an own boost spirit-based tokenizer to detect hybrid PDFs 

(embedded ODF)

● Very hard to modify and maintain

● vcl::filter::PDFDocument:

● clang-style close tracking of each parsed token

● Provides just what’s necessary to verify and create PDF signatures

● Later reused to copy PDF images into a PDF export result as-is

(via ascertia)

http://www.ascertia.com/


Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 11 / 20 

Verification with PDFium: PDFium side

Provide a whole set of new PDFium (from Chrome) APIs:

● https://pdfium.googlesource.com/pdfium/+/refs/heads/master
/public/fpdf_signature.h

● Get signature objects

● Get signature properties:

● Content: PKCS#7 blob

● ByteRange: offset + size of signed
data blocks

● SubFilter: how to parse the content

● Reason/comment

● Timestamp
(via wikipedia.org)

https://pdfium.googlesource.com/pdfium/+/refs/heads/master/public/fpdf_signature.h
https://pdfium.googlesource.com/pdfium/+/refs/heads/master/public/fpdf_signature.h
https://en.wikipedia.org/wiki/Google_Chrome


Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 12 / 20 

Verification with PDFium: LibreOffice side

Focus on the most painful part: implicit verification on every file 
open

● A more battle-tested tokenizer is a huge win here

● If a problem requires explicit user interaction, it’s much less 
interesting

● Idea: use PDFium to extract the info from the PDF file

● Keep our own code to actually verify the signature (offload to 
real crypto libs)

● Keep our existing certificate verification code (continue to 
delegate the decision to Mozilla/Microsoft)



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 13 / 20 

Verification with PDFium: benefits

Immediate access to all those tiny little bugfixes from PDFium

● Sample document where the old tokanizer failed:

xmlsecurity/qa/unit/pdfsigning/data/good-custom-magic.pdf

● Junk between the PDF header and the first PDF object

● We rejected that previously, to be
on the safe side

● Additional benefits:

● Can detect modify-after-sign better:

unsigned incremental updates between
signatures

● Can also detect comment-only incremental

updates after signing

● Those are valid, but hard to detect without
PDFium



How is this 

implemented?



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 15 / 20 

PDFium side: implementation
PDFium internal C++ API had this information mostly already

● Just adding wrapper stable C APIs around these

● Tricky case: detecting incremental updates

● PDF is normally read from end, to find the trailer

● Then that refers to the latest version of all objects

● Normally the tokenizer doesn’t even read previous trailers

● New special mode is added in PDFium to detect all trailer ends

● Needed to detect unsigned and non-commenting 
incremental updates after signing



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 16 / 20 

PDFium side: documentation, testing

All new PDFium APIs need:

● Manually written PDF test file template (no redundant file offsets)

● Generate a minimal, yet valid PDF “binary” from it

● googletest testcase asserting correct behavior

● And test the various failure modes

● Documentation on the intended behavior

● e.g. is the returned UTF-16 string little endian?



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 17 / 20 

LibreOffice side: implementation

Had to do this incrementally

● First, pdfium doesn’t depend on any crypto libraries

● So all code only has unit-tests, no integration tests

● pdfiumsig: external cmdline tool that does integration tests 
with NSS

● Then separate usage of vcl::filter::PDFDocument in xmlsecurity/

● Into a single xmlsecurity/source/helper/pdfsignaturehelper.cxx

● Finally switch from vcl::filter::PDFDocument to PDFium APIs

● Clean-up: switch to vcl::pdf::PDFiumDocument, which is a C++ 

wrapper around the PDFium C APIs



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 18 / 20 

LibreOffice side: testing

The old verifier had good coverage, so this should be safe...

● CppunitTest_xmlsecurity_pdfsigning in xmlsecurity/ gets a new 
testGoodCustomMagic()

● Something that failed with the old tokenizer

● Then random manual testing with random signed PDF invoices I 
get, so far so good :-)



Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 19 / 20 

Thanks

Collabora is an open source consulting and product company

● What we do and share with the community has to be paid by 
someone

The Dutch Ministry of Defense in cooperation with Nou&Off

● Made most of this this work by Collabora possible

(via nouenoff.nl)

https://www.nouenoff.nl/


Collabora Productivity FOSDEM 2021, Virtual | Miklos Vajna 20 / 20 

Summary

Good digital signature support of ODF, OOXML & PDF

● Including signature descriptions, XAdES & PAdES

● Modern hash & encryption algorithms: SHA-256 & ECDSA

● Interoperable with MS Office & Adobe Acrobat

● Latest news is visible PDF signatures & PDFium

Thanks for listening! :-)

● Slides: https://people.collabora.com/~vmiklos/slides/ 

https://people.collabora.com/~vmiklos/slides/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

