
Collabora
Office

OPENSUSE-LIBREOFFICE CONF’20

Required  
Magic
advanced technology

Implementing Vulkan-
capable drawing using 
the Skia library
By Luboš Luňák

Software Engineer at Collabora Productivity



Graphics in LibreOffice



collaboraonline.org

Basic overview

Different LO libraries

 Low-level: VCL

 Basic graphics operations, widgets

 High-level: Drawinglayer

 Representation of graphics primitives

 Uses “processors” to draw primitives using VCL

 Others

 Canvas – UNO-based, more modern, meant-to-replace VCL

 Almost unused

 ??? (it’s complicated, competing designs, unfinished rewrites,...)



collaboraonline.org

VCL (LibreOffice Visual Class Library)

 Widgets (buttons, checkboxes, …)

 Basic rendering (lines, rectangles, gradients, ...)

 Graphic backends: Windows, gen, Qt, Gtk, Quartz, headless

 Some backends themselves have several implementation backends:

 Windows → GDI / OpenGL

 gen → X11 / OpenGL



collaboraonline.org

VCL problems

Old design

 1bpp, 4bpp bitmaps

 Paletted bitmaps

 Transparency vs opacity

 Separate alpha channel (24+8bpp vs 32bpp bitmaps)

 Graphics operations done by explicitly writing the code

 Graphics operations done on the CPU

 API reflects these design choices



collaboraonline.org

VCL problems #2

 => slow, error prone, complicated code

 We are office suite developers, not graphics library developers



collaboraonline.org

OpenGL VCL backend

Attempt to improve VCL graphics

 GPU-accelerated

 Operations done by dedicated code (instead of “anywhere”)

 More modern concepts

Problems

 Requires working HW/drivers, no fallback (other than other VCL backend)

 Graphics operations still done by explicitly written code



Skia VCL backend



collaboraonline.org

Skia Library

 Modern 2D graphics rendering library

 Different drawing backends

 CPU-based (‘Raster’)

 Vulkan

 Others (OpenGL, D3D, Metal)

 Good performance

 Multiplatform

 Powerful yet reasonably simple C++ API



collaboraonline.org

VCL backend basic parts

Bitmap representation

 Stores image information (pixels)

Graphics operations

 Performs drawing and stores the result

Instance

 Creates objects, book-keeping, …

Others ...



collaboraonline.org

SkiaSalBitmap

 Stores pixels, palette, color-depth, size, …

 Allows access to these bitmap data

 Converts to Skia formats for use



collaboraonline.org

SkiaSalGraphicsImpl

 Stores result of drawing (not SkiaSalBitmap, but can be converted to)

 Draws the result to the screen (if window-based and not offscreen)

 Draws bitmaps

 Draws other primitives (lines, gradients, polygons, text,...)



collaboraonline.org

Problems&solutions #1

Skia does not support old formats (1bpp, 4bpp, palettes)

 Need to be stored twice and converted

 Better: Outside code should accept bitmap’s preferred format

 Currently: For huge bitmaps (and raster or low memory), only one format is kept and 
converted to other on-demand



collaboraonline.org

Problems&solutions #2

Bitmaps usually give pixel access to outside code to perform an operation

 Slow, especially fetching GPU-stored pixels

 No or difficult caching

 Explicitly written external code

 No encapsulation, tedious to change (e.g. transparency vs opacity)

 Better: Common operations done directly by the bitmap

 Scale, blend, convert, …

 Already started by the OpenGL backend



collaboraonline.org

Problems&solutions #3

Separate alpha channel

 ARGB is stored as 24bpp RGB bitmap and 8bpp bitmap

 Uses transparency (inverse of opacity, the usual alpha format)

 For drawing these need to be blended back

 SalGraphics uses additional internal alpha SalGraphics

 Slow, wastes memory, complicated

 Better: Store as 32bpp, do not separate (unless needed)



collaboraonline.org

Problems&solutions #4

Higher-level LibreOffice code performs graphics operations itself

 Gradients converted to polygons

 Line dashing converted to polygons

 Bitmap blending done in loops pixel by pixel

 => slow, error-prone, complicated, have to maintain the code

 Better: Implement in SalBitmap and SalGraphics, improve VCL API

 Already started by the OpenGL backend



Present and Future



collaboraonline.org

Current status

 Implemented for Windows and Linux (the ‘gen’ backend)

 Default on Windows.

 Vulkan is default, if available, with a fallback to Raster if there are problems.

 So far no big problems (it seems, hopefully :) ).

 Passes all VCL unittests (unlike all other VCL backends except for headless).

 Already outperforms other backends in many cases, even in Raster mode.



collaboraonline.org

Future

 More bugfixing, including performance fixes/improvements.

 ?

 Depends also on others. Contributions are welcome.

 Improvements mentioned in this talk.

 Support for more platforms (Qt5/KF5?)

 ...



collaboraonline.org

More Information

 vcl/skia/README

 http://skia.org

http://skia.org/


Thank you.

 More information:

 vcl/skia/README

 https://skia.org

 l.lunak@collabora.com

Work sponsored by

https://skia.org/

